
Advanced Computer Architecture CMSC 611

Extra Credit HW2

Due at 1.05pm, Dec 3
rd

, 2012

(If you wish to go green, then you can submit the entire Homework electronically. Make sure

you include the string “CMSC 611 Homework” in your subject line. Deadline remains the same)

Please DO NOT email your homework to Dr. Olano!! DO NOT include him in the CC either!!

There is a strong chance it won’t be graded if you do!! Send it only to <abhay1@umbc.edu>

1) (30 points)

a) What is seek time in a fixed disk? What is rotational latency?

Seek time is the time required to position the head over the correct track. Rotational

latency is the time required for the correct sector to rotate under the head.

b) How does RAID increase data availability in a disk IO system? How does RAID

increase data reliability in a disk IO system?

Data availability is increased due to redundancy of data storage, either via parity bits

or mirroring. This allows hot swapping which means that a single failed disk can be

replaced without taking down the entire array.

Data reliability is increased due to the detection of errors via the Parity bits.

Performance is increased via parallel access to multiple disks.

c) What is a Vector operation? Give an example

A vector operation is the same operation applied to multiple sets of data. The Pentium

4 allows a floating point operation to be applied to 4 single precision FP numbers

(each 32 bits) that are contained in a 128 bit registers.

d) What is the primary advantage of adding a translation lookaside buffer (TLB)?

A specially tailored hardware designed for accelerating address translation from

virtual address space to physical address space

e) What is the difference between a conflict miss and a compulsory miss for caches?

How would you reduce each type?

Compulsory misses are those misses caused by the first reference to a data. Increasing

the block size reduces the number of those misses.

Conflict misses occur when multiple memory locations map to the same cache

location. Increasing the cache size and associativity reduce those misses.

f) Define

i. Out-of-order execution

ii. Very long instruction word (VLIW)

Out-of-order execution – a superscalar architecture in which the order of

instruction execution depends on data and resource availability. This order

may be different from that in the program.

VLIW – a static ILP architecture in which the compiler, based on

independence, selects sets of instructions for parallel execution. These sets are

packed in words of a wide (e.g., 512 bits) instruction memory.

2) (30 points)

Assume you have a processor with an ideal CPI without memory stalls for each instruction

type as follows: ALU=1, Load/Store=1.5, Branch=1.5, Jump=1. Consider an application

which has an instruction mix of 30% ALU and logical operations, 40% load and store, 20%

branch and 10% jump instructions.

 (a) Assume a 4-way set associative 1-level separate data and instruction cache with a miss

rate of 20% (0.20) for data accesses and miss rate of 10% (0.10) for instructions, and a miss

penalty of 40 cycles for both instruction and data caches (and assume a cache hit takes 1

cycle). What is the effective CPU time (or effective CPI with memory stalls) and the average

memory access time for this application with this Cache organization?

First compute ideal CPI without memory stalls:

CPIideal=(0.3*1)+(0.4*1.5)+(0.2*1.5)+(0.1*1) = 1.3

The effective CPI, and therefore execution time, includes the memory stalls. This is given by

CPIactual = CPIideal + Memory Stalls per instruction.

The Memory stalls per instruction, Stalls/Inst is given by

Stalls/Inst= (stalls-data/data)+(stalls-inst/inst)

Stalls-data (stalls due to data)= (data miss rate * data miss-penalty) * data accesses/inst

Stalls-inst (stalls due to inst) = (inst. Miss rate * miss penalty) * inst.accesses/inst

The data accesses take place during the 40% Load/Store operations.

The instruction accesses take place once for each instruction – i.e., 100% of the program.

Therefore, stalls/inst = ((0.2*40)*0.4) + (0.1*40)*1) = 7.2

Now compute the Average Memory Access time (AMAT). This is given by:

AMAT = percentage of data accesses (hit time + data miss rate* miss penalty) +

percentage of inst. Accesses (hit time + inst.miss rate*miss penalty).

The percentage data accesses is 0.4/1.4 (i.e., total of 1.4 accesses to memory during entire

program execution, of which 0.4 are for data), and for inst it is 1/1.4

Therefore AMAT = (0.4/1.4)(1 + 0.2*40) + (1/1.4)(1+ 0.1*40) = 6.14

Note that another way to derive stalls per instruction is to multiply the average number of

memory accesses per instruction by the AMAT minus hit time. In this example, the average

number of memory accesses per instruction is 1.4 (i.e., 1 for instruction and 0.4 for data due

to Load/Store). Therefore the average stall cycles per instruction can be derived as:

1.4*(AMAT-1) = 1.4*[(0.4/1.4)(1 + 0.2*40) + (1/1.4)(1+ 0.1*40) - 1] = 7.2 which is

identical to what we got earlier.

(b) Now consider a 2 level 4-way unified cache with a level l (L1) miss rate of 25% (0.25)

and a level 2 (L2) local miss rate of 30% (0.30). Assume hit time in L1 is 1 cycle, assume

miss penalty is 15 cycles if you miss in L1 and hit in L2 (i.e., hit time in L2 is 15

cycles), and assume miss penalty is 50 cycles if you miss in L2 (i.e., miss penalty in L2 is 50

cycles). Derive the equation for the effective CPU time (or effective CPI) and the average

memory access time for the same instruction mix as part (a) for this cache organization.

First note that the miss rate for L2 is given as the local miss rate. Average memory accesses

per instruction = 1.4 as noted earlier (0.4 for data and 1 for inst).

AMAT= (hit time L1) + (miss rate L1)*(Hit time L2 + (Local miss rate L2 * Miss Penalty))

The global miss rate for L2 is not the same as L1 – but you can derive the global miss rate

from the local miss rate of L1 and L2. Note that the local and global miss rate of L1 are the

same.

AMAT = (1 + (0.25)*(15 + (0.3*50))) = 8.5

(THERE WAS A TYPO HERE. IF YOU HAD TAKEN 10 as miss rate, the answer is 7.25)

Effective CPI = Ideal CPI + average memory stalls per instruction.

Average memory stalls per instruction = misses per instruction-L1 * Hit-time L2 + Misses-

per-instruction L2*miss-penalty

This is equivalent to: Average mem.stalls per instruction = (mem.accesses/inst)*(miss rate

L1 * Hit time L2 + Miss rate L2 * miss penalty).

However, note that the Miss rate L2 in the above equation refers to the global miss rate of

L2.

Alternately, we can use our earlier observation that average mem.stalls per instruction can be

derived as

Mem.accesses per instruction * (AMAT -1).

This gives us

Avg.Mem.stalls/inst = 1.4*(AMAT -1) = 1.4*(8.5 -1) = 10.5 cycles.

Which of the two designs (between part a and part b) gives a better performance? Explain

your answer.

The first design, gave us lower AMAT and avg. mem. Stalls/inst and therefore it is a better

design.

3) (40 points)

Consider a system with the following processor components and policies:

 A direct-mapped L1 data cache of size 4KB and block size of 16 bytes, indexed and

tagged using physical addresses, and using a write-allocate, write-back policy

 A fully-associative data TLB with 4 entries and an LRU replacement policy

 Physical addresses of 32 bits, and virtual addresses of 40 bits

 Byte addressable memory

 Page size of 1MB

Part A

Which bits of the virtual address are used to obtain a virtual to physical translation from the

TLB? Explain exactly how these bits are used to make the translation, assuming there is a

TLB hit.

The virtual address is 40 bits long. Because the virtual page size is 1MB = 2^20 bytes, and

memory is byte addressable, the virtual page offset is 20 bits. Thus, the first 40-20=20 bits

are used for address translation at the TLB. Since the TLB is fully associative, all of these

bits are used for the tag; i.e., there are no index bits.

When a virtual address is presented for translation, the hardware first checks to see if the 20

bit tag is present in the TLB by comparing it to all other entries simultaneously. If a valid

match is found (i.e., a TLB hit) and no protection violation occurs, the page frame number is

read directly from the TLB.

Part B

Which bits of the virtual or physical address are used as the tag, index, and block offset bits

for accessing the L1 data cache? Explicitly specify which of these bits can be used directly

from the virtual address without any translation.

Since the cache is physically indexed and physically tagged, all of the bits from accessing the

cache must come from the physical address. However, since the lowest 20 bits of the virtual

address form the page offset and are therefore not translated, these 20 bits can be used

directly from the virtual address. The remaining 12 bits (of the total of 32 bits in the physical

address) must be used after translation.

Since the block size is 16 bytes = 2^4 bytes, and memory is byte addressable, the lowest 4

bits are used as block offset.

Since the cache is direct mapped, the number of sets is 4KB/16 bytes = 2^8. Therefore, 8 bits

are needed for the index.

The remaining 32-8-4 = 20 bits are needed for the tag.

Part C

The following lists part of the page table entries corresponding to a few virtual addresses

(using hexadecimal notation). Protection bits of 01 imply read-only access and 11 implies

read/write access. Dirty bit of 0 implies the page is not dirty. Assume the valid bits of all the

following entries are set to 1.

Virtual page number
Physical page

number
Protection bits Dirty bits

1 FFFFF CFC 11 0

2 FFFFE CAC 11 0

3 FFFFD CFC 11 0

4 FFFFC CBA 11 0

5 FFFFB CAA 11 0

6 FFFFA CCA 01 0

The following table lists a stream of eight data loads and stores to virtual addresses by the

processor (all addresses are in hexadecimal). Complete the rest of the entries in the table

corresponding to these loads and stores using the above information and your solutions to

parts A and B. For the data TLB hit, data cache hit, and protection violation columns, specify

“yes” or “no.” Assume initially the data TLB and data cache are both empty.

Processor load/store

to virtual address

Correspondi

ng physical

address

Part of the

physical

address used

to index the

data cache

Data

TLB

hit?

Data

cache

hit?

Protecti

on

violation

?

Dirty

bit

1 Store FFFFF ABAC1 CFCABAC1 AC No No No 1

2 Store FFFFC ECAB1 CBAECAB1 AB No No No 1

3 Load FFFFF BAAE3 CFCBAAE3 AE Yes No No 0

4 Load FFFFB CEBC3 CAACEBC3 BC No No No 0

5 Store FFFFE AAFA1 CACAAFA1 FA No No No 1

6 Store FFFFC AABC9 CBAAABC9 BC Yes No No 1

7 Load FFFFD BAAE2 CFCBAAE2 AE No Yes No 0

8 Store FFFFA ABAC4 CCAABAC4 AC No No Yes 0

